Feeds:
Posts
Comments

Posts Tagged ‘stars’

[Edit, 4/2/2012: I’ve written a more complete critique of Stenger’s book The Fallacy of Fine-Tuning: Why the Universe Is Not Designed for Us. It’s posted on Arxiv. In particular, the program MonkeyGod is critiqued in Appendix B; most of the points raised below remain valid.]

This post is the second critiquing Victor Stenger’s take on the fine-tuning of the universe for intelligent life. Here are some more of Stenger’s claims. (The quotes below are an amalgam of the articles on this page.)

I think it is safe to conclude that the conditions for the appearance of a universe with life are not so improbable as the those authors, enamored by the anthropic principle, would have you think … [T]here could be many ways to produce a universe old enough to have some form of life.

How does Stenger reach this conclusion?

I have written a program, MonkeyGod … I have studied how the minimum lifetime of a typical star depends on three parameters: the masses of the proton and electron and the strength of the electromagnetic force. (The strong interaction strength does not enter into this calculation.) Varying these parameters by ten orders of magnitude around their present values, I find that over half of the stars will have lifetimes exceeding a billion years, allowing sufficient time for some kind of life to evolve. Long stellar lifetime is not the only requirement for life, but it certainly is not an unusual property of universes. (more…)

Advertisements

Read Full Post »

Today I’ll be looking at a paper on the fine-tuning of the universe by Professor Fred Adams. He is professor of physics at the University of Michigan, where his main field of research is astrophysical theory focusing on star formation, background radiation fields, and the early universe.

Fred Adams published a paper in 2008 entitled “Stars In Other Universes: Stellar structure with different fundamental constants”. The paper garnered some interest from the science blogosphere and popular science magazines. Here are the relevant parts of the abstract:

Motivated by the possible existence of other universes, with possible variations in the laws of physics, this paper explores the parameter space of fundamental constants that allows for the existence of stars. To make this problem tractable, we develop a semi-analytical stellar structure model. [We vary] the gravitational constant G, the fine structure constant $\latex alpha$, and a composite parameter C that determines nuclear reaction rates. Our main finding is that a sizable fraction of the parameter space (roughly one fourth) provides the values necessary for stellar objects to operate through sustained nuclear fusion. As a result, the set of parameters necessary to support stars are not particularly rare.

(more…)

Read Full Post »